Extensions 1→N→G→Q→1 with N=C32 and Q=S3xC6

Direct product G=NxQ with N=C32 and Q=S3xC6
dρLabelID
S3xC32xC6108S3xC3^2xC6324,172

Semidirect products G=N:Q with N=C32 and Q=S3xC6
extensionφ:Q→Aut NdρLabelID
C32:(S3xC6) = C3xC32:D6φ: S3xC6/C3D6 ⊆ Aut C32186C3^2:(S3xC6)324,117
C32:2(S3xC6) = S3xC32:C6φ: S3xC6/S3C6 ⊆ Aut C321812+C3^2:2(S3xC6)324,116
C32:3(S3xC6) = C6xC32:C6φ: S3xC6/C6S3 ⊆ Aut C32366C3^2:3(S3xC6)324,138
C32:4(S3xC6) = C6xHe3:C2φ: S3xC6/C6S3 ⊆ Aut C3254C3^2:4(S3xC6)324,145
C32:5(S3xC6) = C2xHe3:4S3φ: S3xC6/C6C6 ⊆ Aut C3254C3^2:5(S3xC6)324,144
C32:6(S3xC6) = C3xS3xC3:S3φ: S3xC6/C32C22 ⊆ Aut C3236C3^2:6(S3xC6)324,166
C32:7(S3xC6) = C3xC32:4D6φ: S3xC6/C32C22 ⊆ Aut C32124C3^2:7(S3xC6)324,167
C32:8(S3xC6) = C2xS3xHe3φ: S3xC6/D6C3 ⊆ Aut C32366C3^2:8(S3xC6)324,139
C32:9(S3xC6) = S32xC32φ: S3xC6/C3xS3C2 ⊆ Aut C3236C3^2:9(S3xC6)324,165
C32:10(S3xC6) = C3:S3xC3xC6φ: S3xC6/C3xC6C2 ⊆ Aut C3236C3^2:10(S3xC6)324,173
C32:11(S3xC6) = C6xC33:C2φ: S3xC6/C3xC6C2 ⊆ Aut C32108C3^2:11(S3xC6)324,174

Non-split extensions G=N.Q with N=C32 and Q=S3xC6
extensionφ:Q→Aut NdρLabelID
C32.1(S3xC6) = C2xC3wrS3φ: S3xC6/C6S3 ⊆ Aut C32183C3^2.1(S3xC6)324,68
C32.2(S3xC6) = C2xHe3.C6φ: S3xC6/C6S3 ⊆ Aut C32543C3^2.2(S3xC6)324,70
C32.3(S3xC6) = C2xHe3.2C6φ: S3xC6/C6S3 ⊆ Aut C32543C3^2.3(S3xC6)324,72
C32.4(S3xC6) = C2xHe3.4C6φ: S3xC6/C6S3 ⊆ Aut C32543C3^2.4(S3xC6)324,148
C32.5(S3xC6) = C2xC33:C6φ: S3xC6/C6C6 ⊆ Aut C32186+C3^2.5(S3xC6)324,69
C32.6(S3xC6) = C2xHe3.S3φ: S3xC6/C6C6 ⊆ Aut C32546+C3^2.6(S3xC6)324,71
C32.7(S3xC6) = C2xHe3.2S3φ: S3xC6/C6C6 ⊆ Aut C32546+C3^2.7(S3xC6)324,73
C32.8(S3xC6) = C2xHe3.4S3φ: S3xC6/C6C6 ⊆ Aut C32546+C3^2.8(S3xC6)324,147
C32.9(S3xC6) = C3xS3xD9φ: S3xC6/C32C22 ⊆ Aut C32364C3^2.9(S3xC6)324,114
C32.10(S3xC6) = S3xC9:C6φ: S3xC6/C32C22 ⊆ Aut C321812+C3^2.10(S3xC6)324,118
C32.11(S3xC6) = C2xS3x3- 1+2φ: S3xC6/D6C3 ⊆ Aut C32366C3^2.11(S3xC6)324,141
C32.12(S3xC6) = S32xC9φ: S3xC6/C3xS3C2 ⊆ Aut C32364C3^2.12(S3xC6)324,115
C32.13(S3xC6) = D9xC18φ: S3xC6/C3xC6C2 ⊆ Aut C32362C3^2.13(S3xC6)324,61
C32.14(S3xC6) = C2xC32:C18φ: S3xC6/C3xC6C2 ⊆ Aut C32366C3^2.14(S3xC6)324,62
C32.15(S3xC6) = C2xC32:D9φ: S3xC6/C3xC6C2 ⊆ Aut C3254C3^2.15(S3xC6)324,63
C32.16(S3xC6) = C2xC9:C18φ: S3xC6/C3xC6C2 ⊆ Aut C32366C3^2.16(S3xC6)324,64
C32.17(S3xC6) = D9xC3xC6φ: S3xC6/C3xC6C2 ⊆ Aut C32108C3^2.17(S3xC6)324,136
C32.18(S3xC6) = C6xC9:C6φ: S3xC6/C3xC6C2 ⊆ Aut C32366C3^2.18(S3xC6)324,140
C32.19(S3xC6) = C6xC9:S3φ: S3xC6/C3xC6C2 ⊆ Aut C32108C3^2.19(S3xC6)324,142
C32.20(S3xC6) = C18xC3:S3φ: S3xC6/C3xC6C2 ⊆ Aut C32108C3^2.20(S3xC6)324,143
C32.21(S3xC6) = C2xC33.S3φ: S3xC6/C3xC6C2 ⊆ Aut C3254C3^2.21(S3xC6)324,146
C32.22(S3xC6) = S3xC3xC18central extension (φ=1)108C3^2.22(S3xC6)324,137

׿
x
:
Z
F
o
wr
Q
<