extension | φ:Q→Aut N | d | ρ | Label | ID |
C32⋊(S3×C6) = C3×C32⋊D6 | φ: S3×C6/C3 → D6 ⊆ Aut C32 | 18 | 6 | C3^2:(S3xC6) | 324,117 |
C32⋊2(S3×C6) = S3×C32⋊C6 | φ: S3×C6/S3 → C6 ⊆ Aut C32 | 18 | 12+ | C3^2:2(S3xC6) | 324,116 |
C32⋊3(S3×C6) = C6×C32⋊C6 | φ: S3×C6/C6 → S3 ⊆ Aut C32 | 36 | 6 | C3^2:3(S3xC6) | 324,138 |
C32⋊4(S3×C6) = C6×He3⋊C2 | φ: S3×C6/C6 → S3 ⊆ Aut C32 | 54 | | C3^2:4(S3xC6) | 324,145 |
C32⋊5(S3×C6) = C2×He3⋊4S3 | φ: S3×C6/C6 → C6 ⊆ Aut C32 | 54 | | C3^2:5(S3xC6) | 324,144 |
C32⋊6(S3×C6) = C3×S3×C3⋊S3 | φ: S3×C6/C32 → C22 ⊆ Aut C32 | 36 | | C3^2:6(S3xC6) | 324,166 |
C32⋊7(S3×C6) = C3×C32⋊4D6 | φ: S3×C6/C32 → C22 ⊆ Aut C32 | 12 | 4 | C3^2:7(S3xC6) | 324,167 |
C32⋊8(S3×C6) = C2×S3×He3 | φ: S3×C6/D6 → C3 ⊆ Aut C32 | 36 | 6 | C3^2:8(S3xC6) | 324,139 |
C32⋊9(S3×C6) = S32×C32 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C32 | 36 | | C3^2:9(S3xC6) | 324,165 |
C32⋊10(S3×C6) = C3⋊S3×C3×C6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C32 | 36 | | C3^2:10(S3xC6) | 324,173 |
C32⋊11(S3×C6) = C6×C33⋊C2 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C32 | 108 | | C3^2:11(S3xC6) | 324,174 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
C32.1(S3×C6) = C2×C3≀S3 | φ: S3×C6/C6 → S3 ⊆ Aut C32 | 18 | 3 | C3^2.1(S3xC6) | 324,68 |
C32.2(S3×C6) = C2×He3.C6 | φ: S3×C6/C6 → S3 ⊆ Aut C32 | 54 | 3 | C3^2.2(S3xC6) | 324,70 |
C32.3(S3×C6) = C2×He3.2C6 | φ: S3×C6/C6 → S3 ⊆ Aut C32 | 54 | 3 | C3^2.3(S3xC6) | 324,72 |
C32.4(S3×C6) = C2×He3.4C6 | φ: S3×C6/C6 → S3 ⊆ Aut C32 | 54 | 3 | C3^2.4(S3xC6) | 324,148 |
C32.5(S3×C6) = C2×C33⋊C6 | φ: S3×C6/C6 → C6 ⊆ Aut C32 | 18 | 6+ | C3^2.5(S3xC6) | 324,69 |
C32.6(S3×C6) = C2×He3.S3 | φ: S3×C6/C6 → C6 ⊆ Aut C32 | 54 | 6+ | C3^2.6(S3xC6) | 324,71 |
C32.7(S3×C6) = C2×He3.2S3 | φ: S3×C6/C6 → C6 ⊆ Aut C32 | 54 | 6+ | C3^2.7(S3xC6) | 324,73 |
C32.8(S3×C6) = C2×He3.4S3 | φ: S3×C6/C6 → C6 ⊆ Aut C32 | 54 | 6+ | C3^2.8(S3xC6) | 324,147 |
C32.9(S3×C6) = C3×S3×D9 | φ: S3×C6/C32 → C22 ⊆ Aut C32 | 36 | 4 | C3^2.9(S3xC6) | 324,114 |
C32.10(S3×C6) = S3×C9⋊C6 | φ: S3×C6/C32 → C22 ⊆ Aut C32 | 18 | 12+ | C3^2.10(S3xC6) | 324,118 |
C32.11(S3×C6) = C2×S3×3- 1+2 | φ: S3×C6/D6 → C3 ⊆ Aut C32 | 36 | 6 | C3^2.11(S3xC6) | 324,141 |
C32.12(S3×C6) = S32×C9 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C32 | 36 | 4 | C3^2.12(S3xC6) | 324,115 |
C32.13(S3×C6) = D9×C18 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C32 | 36 | 2 | C3^2.13(S3xC6) | 324,61 |
C32.14(S3×C6) = C2×C32⋊C18 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C32 | 36 | 6 | C3^2.14(S3xC6) | 324,62 |
C32.15(S3×C6) = C2×C32⋊D9 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C32 | 54 | | C3^2.15(S3xC6) | 324,63 |
C32.16(S3×C6) = C2×C9⋊C18 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C32 | 36 | 6 | C3^2.16(S3xC6) | 324,64 |
C32.17(S3×C6) = D9×C3×C6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C32 | 108 | | C3^2.17(S3xC6) | 324,136 |
C32.18(S3×C6) = C6×C9⋊C6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C32 | 36 | 6 | C3^2.18(S3xC6) | 324,140 |
C32.19(S3×C6) = C6×C9⋊S3 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C32 | 108 | | C3^2.19(S3xC6) | 324,142 |
C32.20(S3×C6) = C18×C3⋊S3 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C32 | 108 | | C3^2.20(S3xC6) | 324,143 |
C32.21(S3×C6) = C2×C33.S3 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C32 | 54 | | C3^2.21(S3xC6) | 324,146 |
C32.22(S3×C6) = S3×C3×C18 | central extension (φ=1) | 108 | | C3^2.22(S3xC6) | 324,137 |